scaremongering-Wordle

What does science say about GMO’s–they’re safe

The science deniers of the world, whether they deny evolution, global warming, vaccines, or GMO safety, spend their time inventing pseudoscience to support their beliefs and claims. As I have written previously, “Pseudoscience is easy. It doesn’t take work. It’s the lazy man’s (or woman’s) “science.” But it has no value, and because it lacks high quality evidence in support of it, it should be dismissed, and it should not be a part of the conversation.”

Alternatively, real science is really hard. And it takes time. And it’s based on high quality evidence. And it is repeated. And it is almost always published in high quality journals. As I’ve said a thousand times, real science takes hard work and is intellectually challenging. You just don’t wake up one day and say “I’m a scientist.” No, it requires college, graduate school, teaching, working in world class laboratories, publishing, defending your ideas to your peers, and one day, if you don’t stop, you will be an authority in your little field of science.

The anti-GMO crowd is mostly lazy. They have this luddite belief that all technology is bad, but have absolutely no evidence to support it. Sure, they pick out one or two poorly done articles and then shout for all the world to hear “GMO’s are dangerous to…bees, humans, babies, whales, trees” over and over and over again.  Yet what do the GMO refusers really bring to the table? 

Without really trying (though it took several days to read through the articles), I found 114 peer-reviewed articles, mostly published in moderate to high impact factor journals that support the safety of GMO crops over a wide range of hypotheses: from transgenic particles in bovine milk to how non targeted insects survive (or don’t). I found several meta reviews, which, as I’ve said before, are the highest quality sources of evidence. None of this research was sponsored by corporations, and frankly, I didn’t have enough time to read all those articles in addition to the ones included here. I even went to the effort to find the 2012 Impact Factors for each of the journals, so you know the quality of the journal. Note that impact factors, though I rely on them, are an imperfect measurement, much like a batting average for a baseball player doesn’t fully explain the skills that he may or may not have.

There were hundreds of other articles I could have included. But these are the ones I judged to be the best. And if you add up all of the conclusions written, a consensus forms. And that is that GMO’s are generally safe. There will be no transgenic DNA in your glass of milk. The transgenic DNA isn’t going to be absorbed through your intestine and cause some autoimmune reaction.

And I just didn’t find the articles that supported my “beliefs” or “opinions.” I found the best articles period. I found the articles that supported the broad scientific consensus that GMO foods are safe.

The American Association for the Advancement of Science (AAAS) is a prestigious international non-profit organization that has as its stated goals to promote cooperation among scientists, to defend scientific freedom, to encourage scientific responsibility, and to support scientific education and science outreach for the betterment of all humanity. AAAS is the world’s largest and most prestigious general scientific society, and is the publisher of the well-known scientific journal Science

The AAAS emphatically states that evolution and human caused climate change are scientific facts, so the organization is not in the hands of scientific lunatics or deniers.

And the AAAS has clearly and unreservedly published the scientific consensus regarding genetically modified foods (pdf):

The science is quite clear: crop improvement by the modern molecular techniques of biotechnology is safe … The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

But, if the GMO refusers want to provide real scientific evidence that GMO foods are dangerous, I’ll be glad to read it. I’ll be thrilled to write about it, because I happen to be openminded about ALL science. But right now the scientific consensus supports GMO safety.

But be forewarned, if it is junk science, I will call it junk science, like Gilles-Eric Séralini et al.’s paper about GMO corn causing cancer. Except it was poorly designed, utilized bad statistics, and really provided no evidence whatsoever for anything except that Séralini is an incompetent scientist. Because openminded doesn’t mean I accept all evidence as being equivalent–being openminded means a willingness to review and critique new data and determine if it’s of sufficient quality and quantity to move the consensus. Claiming that Monsanto or Big Agra are suppressing the evidence is simply a logical fallacy unworthy of discussion.

Science has provided substantial evidence supporting the assertion that GMO’s are safe. GMO refusers have provided precious little evidence, save for Cherry PickingSpecial Pleading, and a few Strawman Arguments. Oh, and the occasional Poisoning the Well with the Big Agra shill accusations. Like I said in another article, “The typical pseudoscientist will use logical fallacies to state very definitively that “it’s proven.” It’s the same whether it’s creationism (the belief that some magical being created the world some small number of years ago), alternative medicine (homeopathy, which is nothing but water, has magical properties to cure everything from cancer to male pattern baldness), or vaccine denialists. The worst problem is that in the world of the internet, if you Google these beliefs, the number of websites and hits that seem to state that they are THE TRUTH™ overwhelm those that are more skeptical or critical.”

But the most important thing is that science isn’t a vote based on the number of papers published. But when the consensus is so heavily weighted to the safety of GMO’s, it’s hard to see anything but a landslide. Now, I know that the typical GMO refuser will cherry pick a couple of poorly designed studies and try to refute all of these. Or they’ll read one or two of the articles, and pick out a sentence that might say “GMO fields showed slightly less insect activity than unused land” (while ignoring all of the other sentences).

If you’re asserting that GMO’s are dangerous–provide evidence. And it better be published in a relatively high impact journal.

Editor’s note: This article was originally published in June 2013. It has been completely revised and updated to include more comprehensive information, to improve readability and to add current research.

Key citations:

  1. Álvarez-Alfageme F, von Burg S, Romeis J. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions. PLoS One. 2011;6(7):e22690. doi: 10.1371/journal.pone.0022690. Epub 2011 Jul 28. PubMed PMID: 21829479; PubMed Central PMCID: PMC3145666. Impact Factor: 3.730.
  2. Anilkumar B, Reddy AG, Kalakumar B, Rani MU, Anjaneyulu Y, Raghunandan T, Reddy YR, Jyothi K, Gopi KS. Sero-biochemical Studies in Sheep Fed with Bt Cotton Plants. Toxicol Int. 2010 Jul;17(2):99-101. doi: 10.4103/0971-6580.72680. PubMed PMID: 21170255; PubMed Central PMCID: PMC2997465. Impact Factor: 0.510.
  3. Atkinson HJ, Johnston KA, Robbins M. Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet. J Nutr. 2004 Feb;134(2):431-4. PubMed PMID: 14747684. Impact factor: 3.302
  4. Aulrich K, Böhme H, Daenicke R, Halle I, Flachowsky G. Genetically modified feeds in animal nutrition. 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Arch Tierernahr. 2001;54(3):183-95. PubMed PMID: 11865766.
  5. Batista R, Saibo N, Lourenço T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3640-5. doi: 10.1073/pnas.0707881105. Epub 2008 Feb 26. PubMed PMID: 18303117; PubMed Central PMCID: PMC2265136. Impact factor: 9.681.
  6. Bakan B, Melcion D, Richard-Molard D, Cahagnier B. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem. 2002 Feb 13;50(4):728-31. PubMed PMID: 11829636. Impact factor: 2.906.
  7. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J. 2006 Jul;4(4):369-80. PubMed PMID: 17177803. Impact factor: 5.442
  8. Brake DG, Thaler R, Evenson DP. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. J Agric Food Chem. 2004 Apr 7;52(7):2097-102. PubMed PMID: 15053558. Impact factor: 2.906
  9. Brake DG, Evenson DP. A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem Toxicol. 2004 Jan;42(1):29-36. PubMed PMID: 14630127. Impact factor: 3.010
  10. Böhme H, Aulrich K, Daenicke R, Flachowsky G. Genetically modified feeds in animal nutrition. 2nd communication: glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch Tierernahr. 2001;54(3):197-207. PubMed PMID: 11865767.
  11. Böhme H, Rudloff E, Schöne F, Schumann W, Hüther L, Flachowsky G. Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs. Arch Anim Nutr. 2007 Aug;61(4):308-16. PubMed PMID: 17760308. Impact factor: 1.095 (fairly low, but a new journal)
  12. Borejsza-Wysocka E, Norelli JL, Aldwinckle HS, Malnoy M. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol. 2010 Jun 3;10:41. doi: 10.1186/1472-6750-10-41. PubMed PMID: 20525262; PubMed Central PMCID: PMC2910661. Impact Impact: 2.165.
  13. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001 May;81(5):735-47. PubMed PMID: 11351045. Impact Factor: 3.961
  14. Bub A, Möseneder J, Wenzel G, Rechkemmer G, Briviba K. Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr. 2008 Mar;47(2):99-103. doi: 10.1007/s00394-008-0702-2. Epub 2008 Mar 4. PubMed PMID: 18320254. Impact factor: 3.127.
  15. Cao S, Xu W, Luo Y, He X, Yuan Y, Ran W, Liang L, Huang K. Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) meal in a 90-day dietary toxicity study in rats. Mol Biosyst. 2011 Jul;7(7):2304-10. doi: 10.1039/c1mb05076a. Epub 2011 May 19. PubMed PMID: 21594293. Impact Factor: 3.350.
  16. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J.Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14458-62. Epub 2005 Sep 26. PubMed PMID: 16186495; PubMed Central PMCID: PMC1242293. Impact factor: 9.681.
  17. Cattaneo MG, Yafuso C, Schmidt C, Huang CY, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Marsh SE, Antilla L, Dutilleul P, Carrière Y.Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7571-6. Epub 2006 May 4. PubMed PMID: 16675554; PubMed Central PMCID: PMC1457091. Impact factor: 9.681.
  18. Chambers PA, Duggan PS, Heritage J, Forbes JM. The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J Antimicrob Chemother. 2002 Jan;49(1):161-4. PubMed PMID: 11751781. Impact factor: 5.338
  19. Cheeke TE, Rosenstiel TN, Cruzan MB. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot. 2012 Apr;99(4):700-7. doi: 10.3732/ajb.1100529. Epub 2012 Apr 2. PubMed PMID: 22473978. Impact factor: 2.586
  20. Chen ZL, Gu H, Li Y, Su Y, Wu P, Jiang Z, Ming X, Tian J, Pan N, Qu LJ. Safety assessment for genetically modified sweet pepper and tomato. Toxicology. 2003 Jun 30;188(2-3):297-307. PubMed PMID: 12767699. Impact Factor: 3.763
  21. Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strömvik MV. Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem. 2008 May 14;56(9):3057-67. doi: 10.1021/jf073505i. Epub 2008 Apr 23. PubMed PMID: 18433101. Impact factor 2.906.
  22. Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci. 2003 Oct;81(10):2546-51. PubMed PMID: 14552382. Impact Factor: 2.093.
  23. Chowdhury EH, Mikami O, Murata H, Sultana P, Shimada N, Yoshioka M, Guruge KS, Yamamoto S, Miyazaki S, Yamanaka N, Nakajima Y. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11. J Food Prot. 2004 Feb;67(2):365-70. PubMed PMID: 14968971. Impact Factor: 1.832.
  24. Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y. Detection of Cry1Ab protein in gastrointestinal contents but not visceral organs of genetically modified Bt11-fed calves. Vet Hum Toxicol. 2003 Mar;45(2):72-5. PubMed PMID: 12678290. Impact Factor: 0.66 (journal was discontinued in 2004, which means the impact factor drops every year since closing).
  25. Chrenková M, Sommer A, Ceresnáková Z, Nitrayová S, Prostredná M. Nutritional evaluation of genetically modified maize corn performed on rats. Arch Tierernahr. 2002 Jun;56(3):229-35. PubMed PMID: 12391907.
  26. Cleveland TE, Dowd PF, Desjardins AE, Bhatnagar D, Cotty PJ. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag Sci. 2003 Jun-Jul;59(6-7):629-42. Review. PubMed PMID: 12846313. Impact Factor: 2.594.
  27. Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol. 2010 Jun;73(3):349-62. doi: 10.1007/s11103-010-9624-5. Epub 2010 Mar 27. PubMed PMID: 20349115. Impact Factor: 3.518
  28. Coll A, Nadal A, Collado R, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M. Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines. Transgenic Res. 2009 Oct;18(5):801-8. doi: 10.1007/s11248-009-9266-z. Epub 2009 Apr 26. PubMed PMID: 19396622. Impact factor: 2.906.
  29. Dai PL, Zhou W, Zhang J, Cui HJ, Wang Q, Jiang WY, Sun JH, Wu YY, Zhou T. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica. Ecotoxicol Environ Saf. 2012 May;79:232-7. doi: 10.1016/j.ecoenv.2012.01.005. Epub 2012 Feb 23. PubMed PMID: 22364780. Impact Factor: 2.203.
  30. Defernez M, Gunning YM, Parr AJ, Shepherd LV, Davies HV, Colquhoun IJ. NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem. 2004 Oct 6;52(20):6075-85. PubMed PMID: 15453669. Impact Factor: 2.906.
  31. Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A. Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res. 2009 Feb;8(2):838-48. doi: 10.1021/pr800359d. PubMed PMID: 19099506. Impact factor: 5.056
  32. Domingo JL, Giné Bordonaba J. A literature review on the safety assessment of genetically modified plants. Environ Int. 2011 May;37(4):734-42. doi: 10.1016/j.envint.2011.01.003. Epub 2011 Feb 5. Review. PubMed PMID: 21296423. Impact Factor: 6.248
  33. Dowd PF. Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. J Econ Entomol. 2000 Dec;93(6):1669-79. PubMed PMID: 11142297. Impact factor: 1.600.
  34. Dowd PF. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J Econ Entomol. 2001 Oct;94(5):1067-74. PubMed PMID: 11681667. Impact factor: 1.600.
  35. Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K. Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot. 2007;58(12):3309-21. Epub 2007 Sep 4. PubMed PMID: 17804429. Impact factor: 5.242.
  36. Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One. 2008 Jan 9;3(1):e1415. doi: 10.1371/journal.pone.0001415. PubMed PMID: 18183296; PubMed Central PMCID: PMC2169303. Impact Factor: 3.730.
  37. Duc C, Nentwig W, Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community–a field study. PLoS One. 2011;6(10):e25014. doi: 10.1371/journal.pone.0025014. Epub 2011 Oct 17. PubMed PMID: 22043279; PubMed Central PMCID: PMC3197184. Impact Factor: 3.730.
  38. Duggan PS, Chambers PA, Heritage J, Forbes JM. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol Lett. 2000 Oct 1;191(1):71-7. PubMed PMID: 11004402. Impact factor: 2.049.
  39. Eizaguirre M, Albajes R, López C, Eras J, Lumbierres B, Pons X. Six years after the commercial introduction of Bt maize in Spain: field evaluation, impact and future prospects. Transgenic Res. 2006 Feb;15(1):1-12. Review. PubMed PMID: 16475005. Impact factor: 2.609.
  40. Enot DP, Beckmann M, Overy D, Draper J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14865-70. Epub 2006 Sep 21. PubMed PMID: 16990432; PubMed Central PMCID: PMC1595442. Impact factor: 9.681.
  41. Ewen SW, Pusztai A. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine.Lancet. 1999 Oct 16;354(9187):1353-4. PubMed PMID: 10533866. Impact Factor: 39.060 (one of the highest impact factor medical journals)
  42. Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem. 2008 Dec 10;56(23):11533-9. doi: 10.1021/jf802059w. PubMed PMID: 19007233. Impact Factor: 2.906
  43. Flachowsky G, Halle I, Aulrich K. Long term feeding of Bt-corn–a ten-generation study with quails. Arch Anim Nutr. 2005 Dec;59(6):449-51. PubMed PMID: 16429830. Impact Factor: 1.095.
  44. Fonseca C, Planchon S, Renaut J, Oliveira MM, Batista R. Characterization of maize allergens – MON810 vs. its non-transgenic counterpart. J Proteomics. 2012 Apr 3;75(7):2027-37. doi: 10.1016/j.jprot.2012.01.005. Epub 2012 Jan 13. PubMed PMID: 22270010. Impact Factor: 4.088.
  45. Gao MQ, Hou SP, Pu DQ, Shi M, Ye GY, Chen XX. Multi-generation effects of Bt rice on Anagrus nilaparvatae, a parasitoid of the nontarget pest Nilapavarta lugens. Environ Entomol. 2010 Dec;39(6):2039-44. doi: 10.1603/EN10035. PubMed PMID: 22182572. Impact Factor: 1.314.
  46. Gizzarelli F, Corinti S, Barletta B, Iacovacci P, Brunetto B, Butteroni C, Afferni C, Onori R, Miraglia M, Panzini G, Di Felice G, Tinghino R.Evaluation of allergenicity of genetically modified soybean protein extract in a murine model of oral allergen-specific sensitization. Clin Exp Allergy. 2006 Feb;36(2):238-48. PubMed PMID: 16433863. Impact Factor: 4.789
  47. Graf L, Hayder H, Mueller U. Endogenous allergens in the regulatory assessment of genetically engineered crops. Food Chem Toxicol. 2014 Aug 13;73C:17-20. doi: 10.1016/j.fct.2014.08.001. [Epub ahead of print] PubMed PMID: 25128445. Impact Factor: 2.906.
  48. Gregersen PL, Brinch-Pedersen H, Holm PB. A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res. 2005 Dec;14(6):887-905. PubMed PMID: 16315094. Impact factor: 2.609.
  49. Gruber H, Paul V, Meyer HH, Müller M. Determination of insecticidal Cry1Ab protein in soil collected in the final growing seasons of a nine-year field trial of Bt-maize MON810. Transgenic Res. 2012 Feb;21(1):77-88. doi: 10.1007/s11248-011-9509-7. Epub 2011 Apr 16. PubMed PMID: 21499757. Impact factor: 2.609.
  50. Gruber H, Paul V, Guertler P, Spiekers H, Tichopad A, Meyer HH, Muller M. Fate of Cry1Ab protein in agricultural systems under slurry management of cows fed genetically modified maize (Zea mays L.) MON810: a quantitative assessment. J Agric Food Chem. 2011 Jul 13;59(13):7135-44. doi: 10.1021/jf200854n. Epub 2011 Jun 8. PubMed PMID: 21604675. Impact Factor: 2.906.
  51. Huang F, Andow DA, Buschman LL.. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomologia Experimentalis et Applicata 2011; 140:1–16. DOI: 10.1111/j.1570-7458.2011.01138.x. Impact Factor: 1.669.
  52. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB. A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol. 2004 Dec;22(12):1601-6. PubMed PMID: 15583675. Impact Factor: 32.438
  53. Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y, Li S, Jin W, Peng H. Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res. 2007 Aug;16(4):491-501. Epub 2007 Apr 19. PubMed PMID: 17443417. Impact Factor: 2.609
  54. Kiliç A, Akay MT. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem Toxicol. 2008 Mar;46(3):1164-70. doi: 10.1016/j.fct.2007.11.016. Epub 2007 Dec 5. PubMed PMID: 18191319. Impact Factor: 3.010
  55. Kleter GA, Peijnenburg AA, Aarts HJ. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol. 2005;2005(4):326-52. PubMed PMID: 16489267; PubMed Central PMCID: PMC1364539. Impact Factor: 2.880
  56. Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong SS. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci. 2007 Nov;63(11):1107-15. Review. PubMed PMID: 17880042. Impact Factor: 2.594
  57. Kleter GA, Peijnenburg AA. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens. BMC Struct Biol. 2002 Dec 12;2:8. Epub 2002 Dec 12. PubMed PMID: 12477382; PubMed Central PMCID: PMC139984. Impact Factor: 2.099 (an extraordinarily high Impact Factor for a 2 year old journal).
  58. Knudsen I, Poulsen M. Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event. Regul Toxicol Pharmacol. 2007 Oct;49(1):53-62. PubMed PMID: 17719159. Impact Factor: 2.132
  59. Kuiper HA, Noteborn HP, Peijnenburg AA. Adequacy of methods for testing the safety of genetically modified foods. Lancet. 1999 Oct 16;354(9187):1315-6. PubMed PMID: 10533854. Impact Factor: 39.060
  60. Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K.Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.PLoS One. 2011 Feb 16;6(2):e16989. doi: 10.1371/journal.pone.0016989. PubMed PMID: 21359231; PubMed Central PMCID: PMC3040210. Impact Factor: 3.710.
  61. Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem. 2003 Apr 23;51(9):2438-46. PubMed PMID: 12696918. Impact Factor: 2.906.
  62. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem. 2003 Apr 23;51(9):2447-56. Erratum in: J Agric Food Chem. 2004 May 19;52(10):3210. PubMed PMID: 12696919. Impact Factor: 2.906.
  63. Lehesranta SJ, Davies HV, Shepherd LV, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005 Jul;138(3):1690-9. Epub 2005 Jun 10. PubMed PMID: 15951487; PubMed Central PMCID: PMC1176438. Impact Factor: 6.555
  64. Li X, Huang K, He X, Zhu B, Liang Z, Li H, Luo Y. Comparison of nutritional quality between Chinese indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J Food Sci. 2007 Aug;72(6):S420-4. PubMed PMID: 17995700. Impact Factor 1.775
  65. Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C. Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. J Agric Food Chem. 2005 Mar 9;53(5):1453-6. PubMed PMID: 15740023. Impact Factor: 2.906.
  66. Malatesta M, Boraldi F, Annovi G, Baldelli B, Battistelli S, Biggiogera M, Quaglino D. A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing. Histochem Cell Biol. 2008 Nov;130(5):967-77. doi: 10.1007/s00418-008-0476-x. Epub 2008 Jul 22. PubMed PMID: 18648843. Impact Factor: 2.613
  67. Malatesta M, Tiberi C, Baldelli B, Battistelli S, Manuali E, Biggiogera M. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean. Eur J Histochem. 2005 Jul-Sep;49(3):237-42. PubMed PMID: 16216809. Impact Factor: 2.412.
  68. Marvier M, McCreedy C, Regetz J, Kareiva P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science. 2007 Jun 8;316(5830):1475-7. PubMed PMID: 17556584. Impact Factor: 31.027.
  69. McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol. 2011 Nov 1;214(Pt 21):3672-7. doi: 10.1242/jeb.059923. PubMed PMID: 21993797. Impact Factor: 3.236.
  70. Mohanta RK, Singhal KK, Tyagi AK, Rajput YS, Prasad S. Nutritional evaluation of transgenic cottonseed in the ration of lactating dairy cows. Trop Anim Health Prod. 2010 Mar;42(3):431-8. doi: 10.1007/s11250-009-9439-z. Epub 2009 Aug 24. PubMed PMID: 19701795. Impact Factor: 1.09.
  71. Momma K, Hashimoto W, Yoon HJ, Ozawa S, Fukuda Y, Kawai S, Takaiwa F, Utsumi S, Murata K. Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats. Biosci Biotechnol Biochem. 2000 Sep;64(9):1881-6. PubMed PMID: 11055391. Impact Factor: 1.269
  72. Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. Plant Biotechnol J. 2011 Aug;9(6):693-702. doi: 10.1111/j.1467-7652.2010.00572.x. Epub 2010 Oct 29. PubMed PMID: 21040388. Impact Factor: 6.279
  73. Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R. High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J. 2005 Aug;43(4):491-505. PubMed PMID: 16098104. Impact Factor: 6.582.
  74. Olson DM, Ruberson JR, Zeilinger AR, Andow DA. Colonization preference of Euschistus servus and Nezara viridula in transgenic cotton varieties, peanut, and soybean. Entomologia Experimentalis et Applicata 2011;139: 161–169. DOI: 10.1111/j.1570-7458.2011.01116.x. Impact Factor: 1.669.
  75. Paul V, Guertler P, Wiedemann S, Meyer HH. Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic Res. 2010 Aug;19(4):683-9. doi: 10.1007/s11248-009-9339-z. Epub 2009 Nov 4. PubMed PMID: 19888668; PubMed Central PMCID: PMC2902738. Impact Factor: 2.609.
  76. Peterson RK, Shama LM. A comparative risk assessment of genetically engineered, mutagenic, and conventional wheat production systems. Transgenic Res. 2005 Dec;14(6):859-75. PubMed PMID: 16315092.  Impact Factor: 2.609
  77. Phipps RH, Deaville ER, Maddison BC. Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. J Dairy Sci. 2003 Dec;86(12):4070-8. PubMed PMID: 14740846. Impact Factor: 2.566
  78. Powell M, Wheatley AO, Omoruyi F, Asemota HN, Williams NP, Tennant PF. Comparative effects of dietary administered transgenic and conventional papaya on selected intestinal parameters in rat models. Transgenic Res. 2010 Jun;19(3):511-8. doi: 10.1007/s11248-009-9317-5. Epub 2009 Aug 19. PubMed PMID: 19690973. Impact Factor: 2.609.
  79. Qaim M. Benefits of genetically modified crops for the poor: household income, nutrition, and health. N Biotechnol. 2010 Nov 30;27(5):552-7. doi: 10.1016/j.nbt.2010.07.009. Epub 2010 Jul 17. Review. PubMed PMID: 20643233. Impact Factor: 2.338.
  80. Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 2007 Jun;16(3):261-80. Epub 2007 Apr 14. Review. PubMed PMID: 17436060. Impact Factor: 2.609
  81. Reuter T, Aulrich K, Berk A, Flachowsky G. Investigations on genetically modified maize (Bt-maize) in pig nutrition: chemical composition and nutritional evaluation. Arch Tierernahr. 2002 Feb;56(1):23-31. PubMed PMID: 12389219.
  82. Rhee GS, Cho DH, Won YH, Seok JH, Kim SS, Kwack SJ, Lee RD, Chae SY, Kim JW, Lee BM, Park KL, Choi KS. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats. J Toxicol Environ Health A. 2005 Dec 10;68(23-24):2263-76. PubMed PMID: 16326439. Impact Factor: 1.733.
  83. Rose R, Dively GP. Effects of insecticide-treated and Lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environ Entomol. 2007 Oct;36(5):1254-68. PubMed PMID: 18284751. Impact Factor: 1.314.
  84. Rosati A, Bogani P, Santarlasci A, Buiatti M. Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol. 2008 Jun;67(3):271-81. doi: 10.1007/s11103-008-9315-7. PubMed PMID: 18306044. Impact Factor: 3.518
  85. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A, Kamimura H. [A 52-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2007 Jun;48(3):41-50. Japanese. PubMed PMID: 17657996.
  86. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A. [A 104-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2008 Aug;49(4):272-82. Japanese. PubMed PMID: 18787312.
  87. Sarkar B, Patra AK, Purakayastha TJ, Megharaj M. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environ Monit Assess. 2009 Sep;156(1-4):595-604. doi: 10.1007/s10661-008-0508-y. Epub 2008 Aug 22. PubMed PMID: 18720017. Impact Factor: 1.592.
  88. Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res. 2012 Dec;21(6):1255-64. doi: 10.1007/s11248-012-9597-z. Epub 2012 Mar 21. PubMed PMID: 22430369. Impact factor: 2.609.
  89. Schrøder M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel T, Danier J, Rychlik M, Emami K, Gatehouse A, Shu Q, Engel KH, Altosaar I, Knudsen I. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem Toxicol. 2007 Mar;45(3):339-49. Epub 2006 Sep 8. PubMed PMID: 17050059. Impact Factor: 3.010.
  90. Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu Rev Entomol. 2002;47:845-81. Review. PubMed PMID: 11729093. Impact Factor: 13.589.
  91. Shepherd LV, McNicol JW, Razzo R, Taylor MA, Davies HV. Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res. 2006 Aug;15(4):409-25. PubMed PMID: 16906442. Impact factor: 2.609.
  92. Sinagawa-García SR, Rascón-Cruz Q, Valdez-Ortiz A, Medina-Godoy S, Escobar-Gutiérrez A, Paredes-López O. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin. J Agric Food Chem. 2004 May 5;52(9):2709-14. PubMed PMID: 15113180. Impact Factor: 2.906.
  93. Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol. 2012 Mar;50(3-4):1134-48. doi: 10.1016/j.fct.2011.11.048. Epub 2011 Dec 3. Review. PubMed PMID: 22155268. Impact Factor: 3.010.
  94. Sten E, Skov PS, Andersen SB, Torp AM, Olesen A, Bindslev-Jensen U, Poulsen LK, Bindslev-Jensen C. A comparative study of the allergenic potency of wild-type and glyphosate-tolerant gene-modified soybean cultivars. APMIS. 2004 Jan;112(1):21-8. PubMed PMID: 14961970. Impact Factor: 2.068
  95. Tang M, Xie T, Cheng W, Qian L, Yang S, Yang D, Cui W, Li K. A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Transgenic Res. 2012 Jun;21(3):499-510. doi: 10.1007/s11248-011-9550-6. Epub 2011 Sep 11. Erratum in: Transgenic Res. 2012 Aug;21(4):927. PubMed PMID: 21910016. Impact Factor: 2.609.
  96. Taylor J, King RD, Altmann T, Fiehn O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics. 2002;18 Suppl 2:S241-8. PubMed PMID: 12386008. Impact Factor: 3.024
  97. Tian JC, Chen Y, Li ZL, Li K, Chen M, Peng YF, Hu C, Shelton AM, Ye GY. Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. PLoS One. 2012;7(4):e35164. doi: 10.1371/journal.pone.0035164. Epub 2012 Apr 12. PubMed PMID: 22511982; PubMed Central PMCID: PMC3325204. Impact Factor: 3.730.
  98. Thigpen JE, Setchell KD, Saunders HE, Haseman JK, Grant MG, Forsythe DB. Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR J. 2004;45(4):401-16. Review. PubMed PMID: 15454679. Impact Factor: 1.582
  99. Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Dänicke S, Schauzu M, Hafez HM, Flachowsky G. Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Arch Tierernahr. 2003 Aug;57(4):235-52. PubMed PMID: 14533864.
  100. Van Eenennaam AL, Young AE. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J Anim Sci. 2014 Oct;92(10):4255-78. doi: 10.2527/jas.2014-8124. Epub 2014 Sep 2. PubMed PMID: 25184846. Impact Factor: 2.000. Full review of this article.
  101. Venneria E, Fanasca S, Monastra G, Finotti E, Ambra R, Azzini E, Durazzo A, Foddai MS, Maiani G. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops. J Agric Food Chem. 2008 Oct 8;56(19):9206-14. doi: 10.1021/jf8010992. Epub 2008 Sep 10. PubMed PMID: 18781763. Impact Factor: 2.906
  102. Vogler U, Rott AS, Gessler C, Dorn S. Terpene-mediated parasitoid host location behavior on transgenic and classically bred apple genotypes. J Agric Food Chem. 2009 Aug 12;57(15):6630-5. doi: 10.1021/jf901024y. PubMed PMID: 19722568. Impact Factor: 2.906.
  103. von Burg S, van Veen FJ, Álvarez-Alfageme F, Romeis J. Aphid-parasitoid community structure on genetically modified wheat. Biol Lett. 2011 Jun 23;7(3):387-91. doi: 10.1098/rsbl.2010.1147. Epub 2011 Jan 19. PubMed PMID: 21247941; PubMed Central PMCID: PMC3097882. Impact Factor: 3.348.
  104. Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H.High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot. 2006;57(12):3069-78. Epub 2006 Aug 14. PubMed PMID: 16908506. Impact Factor: 5.242.
  105. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Gelencsér E, Jánosi A, Epstein MM, Ross RP, Lawlor PG. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS One. 2011;6(11):e27177. doi: 10.1371/journal.pone.0027177. Epub 2011 Nov 23. PubMed PMID: 22132091; PubMed Central PMCID: PMC3223173. Impact Factor: 3.730.
  106. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Ross RP, Cassidy JP, Lawlor PG. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. Br J Nutr. 2012 Feb;107(3):364-71. doi: 10.1017/S0007114511003011. Impact Factor: 3.302.
  107. Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 2007 Apr;16(2):203-11. Epub 2006 Nov 11. Erratum in: Transgenic Res. 2008 Jun;17(3):477-8. PubMed PMID: 17115253. Impact Factor: 2.906.
  108. Wiedemann S, Gürtler P, Albrecht C. Effect of feeding cows genetically modified maize on the bacterial community in the bovine rumen. Appl Environ Microbiol. 2007 Dec;73(24):8012-7. Epub 2007 Oct 12. PubMed PMID: 17933942; PubMed Central PMCID: PMC2168158. Impact Factor: 3.678.
  109. Yuan Y, Xu W, Luo Y, Liu H, Lu J, Su C, Huang K. Effects of genetically modified T2A-1 rice on faecal microflora of rats during 90 day supplementation. J Sci Food Agric. 2011 Aug 30;91(11):2066-72. doi: 10.1002/jsfa.4421. Epub 2011 Apr 26. PubMed PMID: 21520451. Impact Factor: 1.759.
  110. Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. Transgene x environment interactions in genetically modified wheat. PLoS One. 2010 Jul 12;5(7):e11405. doi: 10.1371/journal.pone.0011405. PubMed PMID: 20635001; PubMed Central PMCID: PMC2902502. Impact Factor: 3.730.
  111. Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res. 2008 Apr;17(2):293-306. Epub 2007 Jun 5. PubMed PMID: 17549600. Impact Factor: 2.906
  112. Zhu Y, Li D, Wang F, Yin J, Jin H. Nutritional assessment and fate of DNA of soybean meal from roundup ready or conventional soybeans using rats. Arch Anim Nutr. 2004 Aug;58(4):295-310. PubMed PMID: 15570744. Impact Factor: 1.095.
  113. Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res. 2008 May;7(5):1850-61. doi: 10.1021/pr0705082. Epub 2008 Apr 5. PubMed PMID: 18393457. Impact Factor: 5.056
  114. Zywicki B, Catchpole G, Draper J, Fiehn O. Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem. 2005 Jan 15;336(2):178-86. PubMed PMID: 15620882. Impact Factor: 2.582.
  • skyoss

    This blog will from now on be known as the “Confused Gecko” and I have changed my icon in your honor. You have crafted an article with a title implying that the long term ingestion of genetically engineered foods is safe for humans, and then you proceed to link out to studies on mildew, rats, pigs, and rodent genitalia. You have provided not one human study in your reference list, not one. You have erected multiple straw-men named: “the nutritional profile of genetically engineered wheat is similar to conventional wheat” or “the testicles of mice are no smaller when fed genetically engineered diet versus conventional diet” etc etc. As if the safety of genetically engineered foods for human consumption can be inferred via studying mice testicles. The actual question here is:

    **********”Are genetically engineered foods safe for long term human consumption”.**************

    So please my little gecko friend, no more straw-man arguments, find me some longitudinal double blinded studies on humans that demonstrate safety. I want data on weight gain, inflammation, rheumatological issues, auto immune dysfunction and birth defects to start. I recognize that it will take you some time, a long long long time but I will check back to see what you have come up with. Until then the only thing I care to hear from you is the rhythmic crunching of cricket carcasses in your gecko jowls..

  • Pingback: GMOs | Strawberryfields()

  • seekorcreate

    My friend – it is an issue of trust, not science. You are absolutely correct that most people have not reviewed the studies done on GMO safety to come to their conclusions, yet they still mistrust – ask yourself really and honestly why that is?

    Why are GMO companies against labeling for consumers? Isn’t lobbying against transparency in itself a red flag?

    Would you trust large human institutions whose main goal is to take more of your money with the least expense to itself? Institutions with a long history of incurring and hiding externalized human and environmental costs?

    You mention peer review and consensus, but is not “group think” a pernicious political reality? Does not the history of science reflect established, consensus paradigms being toppled?

    Is science really the best tool for solving complex multi factorial problems? Why in the age of science are people so obese, when in more ignorant times they were thin? Why in the age of science so many depressed? Why hasn’t science solved those problems?

    Do I need peer reviewed studies to deal with political issues? Is it really so irrational to mistrust GMOs in light of the political realities surrounding them?

  • Pingback: Canine Nutrigenomics by Dr. Jean Dodds: Science as Windowdressing | The SkeptVet()

  • StephanLarose

    How can the author assert there is consensus? The US National Institute of Health reports that peer-reviewed animal feeding studies of GMOs found roughly an equal number of research groups raising concerns about genetically engineered foods and those suggesting GMOs were as safe and nutritious as conventional foods. The review also found that most studies finding GMOs foods the same as conventional foods were performed by biotechnology companies or their associates. The Royal Society of Canada and British Medical Association have noted that some GMOs could be of considerable harm, while there are no epidemiological studies investigating potential health effects of GMO food on human health. However, there is plentiful evidence that GM crops have caused increased resistance to herbicides, leading to increased use of herbicides overall and increased incidences of antibiotic resistant bacteria exposed to these GM crop herbicides. The herbicides have adverse health impacts on children, and due to their prolific use, saturate the air, ground and water as increasing volumes of herbicides are used to compensate for the rapid increase in herbicidal resistance.

    • Janice Rael

      ###

      What the CONSENSUS says.

      “Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.”
      – American Medical Association, 2012

      “No effects on human health have been shown as a result of the consumption of GM foods by the general population in the countries where they have been approved.”
      — World Health Organization, 2013

      “The science is quite clear: crop improvement by the modern molecular techniques of biotechnology is safe.”
      -American Association for the Advancement of Science, 2012

      The Royal Society of Medicine: ”Foods derived from GM crops have been consumed by hundreds of millions of people across the world for more than 15 years, with no reported ill effects (or legal cases related to human health), despite many of the consumers coming from that most litigious of countries, the USA.” (http://1.usa.gov/12huL7Z)

      The European Commission: ”The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research, and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are no more risky than e.g. conventional plant breeding technologies.” (http://bit.ly/133BoZW)

      International Seed Federation: ”The development of GM crops has benefited farmers, consumers and the environment… Today, data shows that GM crops and foods are as safe as their conventional counterparts: millions of hectares worldwide have been cultivated with GM crops and billions of people have eaten GM foods without any documented harmful effect on human health or the environment.” (http://bit.ly/138rZLW)

      Consensus document on GMOs Safety (14 Italian scientific societies): ”GMOs on the market today, having successfully passed all the tests and procedures necessary to authorization, are to be considered, on the basis of current knowledge, safe to use for human and animal consumption.” (http://bit.ly/166WHYZ)

      Society of Toxicology: ”Scientific analysis indicates that the process of GM food production is unlikely to lead to hazards of a different nature than those already familiar to toxicologists. The level of safety of current GM foods to consumers appears to be equivalent to that of traditional foods.” (http://bit.ly/13bOaSt)

      “Transgenic Plants and World Agriculture” – Prepared by the Royal Society of London, the U.S. National Academy of Sciences, the Brazilian Academy of Sciences, the Chinese Academy of Sciences, the Indian National Science Academy, the Mexican Academy of Sciences, and the Third World Academy of Sciences:“Foods can be produced through the use of GM technology that are more nutritious, stable in storage, and in principle health promoting – bringing benefits to consumers in both industrialized and developing nations.” (http://bit.ly/17Cliq5)

      French Academy of Science: ”All criticisms against GMOs can be largely rejected on strictly scientific criteria.” (http://bit.ly/15Hm3wO)

      Union of German Academies of Sciences and Humanities: ”Food derived from GM plants approved in the EU and the US poses no risks greater than those from the corresponding conventional food. On the contrary, in some cases food from GM plants appears to be superior with respect to health.” (http://bit.ly/17ClMMF)

      International Council for Science: ”Currently available genetically modified crops – and foods derived from them – have been judged safe to eat, and the methods used to test them have been deemed appropriate.” (http://bit.ly/15Hn487)

      ###

      Top 5 GMO Myths Debunked: http://www.npr.org/blogs/thesalt/2012/10/18/163034053/top-five-myths-of-genetically-modified-seeds-busted

  • Pingback: 5 Food Labels That Don’t Mean What You Think They Do | publichealthwatch()

  • Pingback: Health Panic | Deadline island()

  • ArthurFrayne

    I have numerous issues with GMOs that don’t need scientific review:

    1: Monsanto controlling the food supply
    2: History that corporations will do anything to deceive and manipulate the public. Here are other things that were accepted as safe: Asbestos, uranium paint, early x-rays, lead in gasoline and paint, saccharine, ddt, cigarettes…
    3: Customers have every right to know where their food comes from.

    Judging by the number of articles I’ve been seeing in the past month that totally dismiss the Anti-GMO crowd and run smear campaigns against companies like Chipotle who are responding to CONSUMER DEMAND, it is clear that Monsanto is waging all out war.

    If you want to trust big corporations, go right ahead, I’ll stick to my organic food because it is my god-damned right!

    • Janice Rael

      Now that we know how you feel about Monsanto, please tell us how you feel about Dow, Bayer, DeKalb, Syngenta, Simplot, and other companies who make seed and herbicides safer and better.

      • ArthurFrayne

        Bayer was part of IG Farben – the chemical conglomerate that made Zyklon B – the gas used to exterminate the Jews that weren’t fit to be used as slave labor in IG Farben’s factory at Auschwitz. That said, none of those companies are going to the extreme lengths that Monsanto is to a) control our food supply, and b) finance legislation that would prevent states form requiring GMO labeling.

        • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

          You win the Godwin Award for stupid strawman arguments.

          You show no ability to provide us with scientifically reliable support for your claims.

          • ArthurFrayne

            And bringing up Godwin is just as much a straw man argument when you’d rather ignore history than look it square in the face. My initial post said “I have numerous issues with GMOs that don’t need scientific review:” That doesn’t mean the science isn’t there, it means that even if it wasn’t there, I still have valid issues with Monsanto. If you wish to trust corporations that is your right, but I’ll take the lessons of history and view them with a guarded eye.

        • Janice Rael

          Are you familiar with Godwin’s Law?

          • ArthurFrayne

            Sure am, but that doesn’t make my statement any less factual or relevant to the conversation.

  • Pingback: scientific evidence against gmos | Online Library()

  • Spencer James Smith

    so either 21 countries dont know anything about science, or maybe they saw past the smoke and mirrors and understood the conspiracy for what it was. https://www.organicconsumers.org/old_articles/gefood/countrieswithbans.php . that is the link which provides which countries banned different GMO crops.

    • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

      The old logical fallacy of Appeal to Popularity. That’s not science. That may just show 21 countries are pseudoscience loving fuckwads.

      • ArthurFrayne

        And you are using the classic propganda/smear tactic of calling the opposition names. Are Jews pseudoscience loving fuckwads because of all the kosher labels on food packages?

        • Ahzoh

          Yes, they are, because they believe in a myth. What? You asked.

    • Gargantua

      Spencer, I very well know the context in one of country of your list. I live in France and I follow this subject of GMO controversy for years. I can tell you that the ban of GMO in France has nothing to do with science. That is pure politics. How do you think a politician will act when a vast majority of electors “know” that GMO causes cancer ?

      Of course, like in any other country in the world, all the scientific institutions in France (including Academy of Science, Academy of Agriculture and all public research institutes including INRA and INSERM) supports the scientific consensus that genetically engineered crops as such are neither safer nor risquier than any other crops for both health and environment. Of course, French anti-GMO activists will answer that all scientific institutions are paid or influenced by industry (the good old Monsanto argument).

  • Rob Hines

    You seem to be forgetting another thing : if the “pro-GMO” people like yourself attacked studies showing the supposed safety of GMO’s like you do the studies that show possible health problems, there’d probably be nothing left for you to link to. There’s probably all types of flaws in so many of the studies that are pro-GMO, but of course, why would you bring up that point? It doesn’t support your arguments. If you can’t bring yourself to mention anything negative about corporations like Monsanto, which have such a bad past, it’s clear that many people arriving at this site will soon notice that and stop wasting their time, no matter how much you ridicule, talk about the “psychology” of “deniers”, and ignore the inconvenient facts. Maybe you should’ve gone into politics instead. Or maybe you are actually in the right place already. Modern “science”, has become so political after all anyway, especially with all of that cash going around.

    • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

      Strawman argument. Either bring real evidence, in the form of peer-reviewed studies, or this discussion will be endless. You are the denier. You need to bring real evidence to the discussion. Otherwise, why would I waste my time with some rhetorical nonsense based in logical fallacies.

      So, unless you have a Ph.D. in a real science, published in real journals, and you have the guts to change the scientific consensus, this is a ridiculous thread.

      I await real science from you. And please, no logical fallacies. It doesn’t help.

      • Rob Hines

        Nah I’ll just leave you to think about your ignorance of Monsanto. “Logical fallacies,” haha, ok. Yours is an argument from delusion. I pointed out that you’re ignoring how bad Monsanto are and have been, I’ll just simply leave you with that. I could link you several papers, but they’ve already been dismissed by the biotech minions already, and that would just repeat, so no point. It’s all that you people can do, attack, because if you let one study through, maybe the floodgates will open, right? Like I said, it’s like politics. It’s pointless, you people are either completely stupid, bought and paid for, or happily creating confusion for the fun of it. If you went after the studies that support GMO’s in the same way you do with those that have shown problems, you’d have hardly anything to source.

        Yes, I get that you’ll say “I have nothing to source”, I do have things to source, but I know you’ll just dismiss them so won’t waste my time. You’re programmed to dismiss them, you probably don’t even have the willpower to be balanced, you’re so invested in your delusion.

        You’re a lair, and you know it. You can’t have studied this for so long and not seen what Monsanto is doing. It’s ok, we’re not going around in circles because I’m out of here.

        Oh, and have fun with your “logical fallacy” and “psychology” games. At least it makes you appear intelligent to some, right? Goodbye.

        • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

          “Argument from delusion” is not a logical fallacy dumbass. Anything else other than the ad hominem personal attacks. Didn’t think so. NEXT.

      • http://www.chef-de-race.com Steve Roman

        A comprehensive review of peer-reviewed articles of animal feeding studies of GMOs in Environ Int. 2011 May;37(4):734-42 identified about the same number of researchers raising concerns about GMO safety as those suggesting they are safe. Unless you can prove the article is bogus, this hardly represents a consensus. Compare this with the 2012 study of peer-reviewed articles about climate change by James Powell which found only 24 articles out of 13,950 that rejected the notion of global warming.

        Frankly, I don’t believe you are interested in “real science”. I think you’re an advocate. I say this as someone with a Ph.D. in Organic Chemistry from Columbia University, a two-year post-doc at Harvard in the laboratory of a Nobel Prize winner and as the author of 53 U.S. patents in agricultural chemistry on behalf of a major international agricultural chemical corporation. I worked for that company during the period Monsanto was first introducing Roundup and later their first Roundup-resistant product. We knew it was all about selling more Roundup and that any claims about enhancing crop productivity for the benefit of the public was disengenuous at best.

  • Gunadi

    If the AAAS statement is the scientific consensus on GM foods, which is clearly confined to the effects on human health, does this imply there is no scientific consensus on possible ecological effects?

    • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

      The broad scientific consensus (despite the denier claims) is for the safety of GM foods on human health, as you state. Your implication that there is no scientific consensus on ecological effects means that there just hasn’t been enough study done. But given the huge lack of plausibility of human effects, confirmed by real science, there’s nothing that would indicate plausibility of environmental effects. And let’s not play that logical fallacy card, Argument from Ignorance, that since there isn’t a consensus about environmental safety then there could be an environmental issue. There hasn’t been one uncovered yet.

      • Gunadi

        I asked a question and did not present an argument as you suggest. Also the lack of plausibility of human effects has been confirmed by science? So you are saying that there have been scientific studies not only on the effects but on the plausibility of human effects? Now you are making things up. Please offer some citations. Also, in your response you make the same mistake you accuse me of. You imply that because there is no scientific consensus there are no ecological issues. This is science? Finally you touch on an issue that is behind the opposition to GM foods. Because there is no scientific consensus on the ecological effects, people adopt a precautionary approach (e.g. The EU moratorium on GM foods). The precautionary principle is certainly not unscientific and it may just be good policy given the uncertainty of future costs and benefits.

  • Shannon

    “Who cares where he’s from?” You are more daft than originally suspected. I don’t even know where to start. Suffice it to say GMO has been sanctioned in this country in a manner unprecedented. I am too bored of you to bother explaining. Anyhoo, my degrees are from Carnegie I research universities so I’d say I understand the scientific process and I am qualified to evaluate studies but you… Don’t tell me! You’re related to Bill O’Reilly, yeah? His chemical engineer cousin? Yawn, don’t bother replying, I won’t be reading it.

    • wzrd1

      GM crops have been accepted in most nations quickly for one reason, increased crop yield and supertankers full of studies proving the products as GRAS.

      • ArthurFrayne

        Yes, GRAS is my standard for what I put in my body.

        • wzrd1

          As GRAS *has* been my lifestyle for 53 years, counting SF time in the US military, I’ll introduce you to my new watch, with many buttons.
          Notable is the Blow Me button. Would you like me to press it?
          Or would you prefer to suckle upon the sterile teet of ignorance?

  • Shannon

    Okay, “Skeptical Raptor” (oh my, that’s clever), you’re so nasty I hesitate to engage but I do want to say one thing so please, indulge me. Now I know my comments are without gravitas since I have merely an MS degree in nutritional science as compared to your doctorate in hubric studies from UDICK but are you aware that the head of the FDA is from Montsanto? Of course you are and I am sure you have profound insight regarding government policy and the relationship between industry and government based on your confidence in FDA standards. By the way, your “commentary” reminds me of the tobacco industry’s PR which stated until the mid 80’s that smoking does not cause cancer, despite overwhelming evidence to the contrary. Before you whine about the overwhelming evidence you have referenced supporting the safety of GMO why don’t you look just a bit more, particularly for studies coming out of France. Wait, don’t tell me, in your professional opinion commie France couldn’t possibly produce a legitimate research paper. I’ll get back to you with the industry-influenced research you know and love, in the meantime, you keep eating that GMO please :)

    • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

      I don’t cater to conspiracy theorists. Who cares where he’s from? It’s cool that someone gave up his corporate career to serve the country. Anyways, the current Commissioner of the FDA is a Harvard Medical School grad who has worked in public health for her whole life, Margaret Hamburg. I guess you’ll have to invent another conspiracy theory.

      BTW, I don’t care one squat about someone’s degree. There are people here who comment who never went to college, and then there are Ph.D.’s and MD’s who studied science their whole life.

      Inventing some passive aggressive statement that you’ve got some low class degree from an online university or whatever is lame as hell. All that matter is 1) you present evidence, 2) you understand what a scientific consensus is, and 3) if you want to go against the consensus, then get off your fat ass and publish articles in real journals that provide evidence against the consensus. Otherwise, your asinine comments about my degree and my world class university education is just immature, ignorant, and evidence of your intellect.

      Oh, the Seralini study? OMFG, you’re an idiot.

      • Rob Hines

        You don’t care that the FDA are so linked with Monsanto, and have been for quite some time now? Yet you preach about “real science”, and ignore the fact that science has been corrupted by corporate funding so much, ok. (I’m sure you have the intelligence to research this and find quite a bit, which makes me a lot more suspicious about what you’re doing here.) Of course, this is a “conspiracy” mindset. Of course it is, because the more you attack people speaking out against GMO’s, the more you switch focus from the arguments and onto “psychology”, the less you have to face the sad truth that corps like Monsanto are up there with the most corrupt on the planet. The fact that you ignore how bad Monsanto is, and also ignore the way that they have links with so many government organizations and scientists that they fund, creates a massive, huge hole in your arguments.

        By ignoring what Monsanto has done, and by refusing to have any doubt about GMO’s, (any long terms studies on Humans in your links back up there?), and your almost infantile notion that science isn’t corrupt when so many other areas of life currently are, you’re the one living in ignorance here, and one day you’ll maybe accept that. The “science” on GMO’s has a long way to go, and no amount of links that you post is going to change that for the time being. Or ridicule.

  • Pingback: Science Green Obama()

  • Pingback: GMOs Are Safe – notafqdn.com()

  • Pingback: I call it as I see it–a denier is not a skeptic()

  • Pingback: Vaccines from GMO corn–science deniers everywhere faint()

  • Pingback: DNA and GM foods | The Logical Place()

  • Pingback: Neil deGrasse Tyson tells GMO haters to chill out–liberals get angry()

  • Pingback: GMO are the spawn of Satan! Right??? | Science Translation()

  • David

    The first study cites a previous study that proved the existence of plieotropic effects from GMO’s. Meaning, they affirmed the danger of one gene adversely affecting several other genes. Here is a wiki page describing Plieotropy. http://en.wikipedia.org/wiki/Pleiotropy

    Here is the study the author cited:
    Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Sceptical Raptor is not doing their homework and is using these studies out of context.

    • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

      Yawn. I’ve been through this. You’re part of the cherry picking corps who wouldn’t understand science if it bit you in the butt. But thanks for the Wikipedia article. Oh wait. It’s one of the 99% of Wikipedia articles that are piss-poor in quality.

      BTW, it’s Skeptical. It’s July 4th, when we crushed the Brits and threw out their fascist royalist government. That gives us the right to spell as we wish.

      This land is my land, this land is your land, From California, to the New York Island…..

      • David

        I am unemployed. As well, I have worked in academic research libraries for several years. I know a good resourse when I see one. You are using studies that don’t even have a full life-span durations for the subjects. Finally, your attitude is a gimmick.

        • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

          My attitude is fine. I’ve been arguing with pseudoscience pushing jerks for 30 years. Creationists. AIDS deniers. Vaccine liars. Anti-GMO twerps. Global warming deniers. You just invent crap out of the air, without getting off your fat lazy worthless asses and actually getting a degree and doing work.

          Full life-span durations? Well geez, that sounds like a global warming denier lie. “We can’t know because we can’t predict the future.” Bullshit. We can actually make predictions based on science with good data. But sure, we’ll listen to you, because you’re an unemployed chef or whatever. Science isn’t your strong suit I see.

          • David

            At the very least, I employ civility in my discussions. Personal attacks are most often employed by those who have no sound or valid arguments to support their claims. Hence, gimmick.

          • http://www.skepticalraptor.com/skepticalraptorblog.php Skeptical Raptor

            Sorry dude. I’ve brought evidence. You’ve brought…..nothing. Since you have no evidence for your statement, except a major Argument from Ignorance, I get to say whatever I want about you. Civility is simply a mask to hide the truth. I’ve seen your type. You have nothing, so you throw out strawman arguments to feel superior. Boooooooooring. Go over to Wikipedia. They love pretend civility and no sources for statements. You could write a whole article on whatever you want. Denial of global warming. How smart you are. How GMO’s are killing people. Enjoy.

          • David

            More of your gimmicks. Eat GMO for the rest of your life. I never denied Global warming. In fact, I believe strongly that Global Warming is real. I also believe GMO foods are dangerous. In fact, the science you “brought” proved that with your first citation. This blog is a joke & you sir, are a troll on a soapbox. Your sceptical raptor bit is rather entertaining when taken as satire. However, I truly believe you may be serious about your position on these topics. If true, I must say, that is sad.

        • Doom Shepherd

          “I have worked in academic research libraries for several years.”
          Janitorial staff doesn’t count.

          • David

            Neither does standing on the sidewalk with a “The end is Nigh!” banner strapped to your chest. But guess what does, answering questions at the reference desk over the course of four years.

  • Pingback: GMO opponents are the left's version of global warming deniers()

    • Steven Sampson

      I just read far enough to find a cool head.. thank you sir for adding some sanity to these comments. Unfortunately the consumption of GE foods is only a small portion of the over all issue. I will add that I have not done extensive reading on the issue before today but it does seem that putting them in your mouth will not affect your blood stream much.. at least not in the first five years.

  • Pingback: Skeptics United » GMO: Kun jalostuksesta tuli luonnotonta()

    • Tyson

      Of course they said that, because any honest, legitimate scientists know that you can’t prove anything with one study. Congrats on cherry-picking a line from an abstract that doesn’t even support your argument. *slow clap*

  • Pingback: AWB Blog Sk Bioscience()

  • Pingback: Review of 10 years of GMO research–no significant dangers()

  • Pingback: The bad science checklist of GMO opponents()

  • Pingback: Getting to the grist about GM (part 2) | Science on the Land()