Skip to content
Home » GMO science – overwhelming consensus that it is safe

GMO science – overwhelming consensus that it is safe


Real science is hard. It takes lots of high quality evidence to support it. That evidence needs to be published in real journal. It needs to be repeated. And it has to be open to criticism and analysis. GMO science, the study of genetically modified organisms used for crops and food, shows us that GMOs are safe.

The hard work and intellectual challenges to form a scientific consensus about the safety of GMO crops and foods isn’t something that appeared out of the ether. These individuals didn’t suddenly wake up one day and proclaim from the ivory tower that GMO science says that GMOs are safe. Not even close.

Science has provided substantial evidence supporting the assertion that GMO’s are safe. GMO refusers have provided precious little evidence, save for Cherry PickingSpecial Pleading, and a few Strawman Arguments. Oh, and the occasional Poisoning the Well with the Monsanto shill accusations. Sometimes the GMO deniers will resort to the Naturalistic Fallacy that things that grow “naturally” ought to be the way foods should be – this ignores the fact that we’ve been genetically manipulating our food for ten thousand years. We’re just better at it today, but the DNA is still the DNA.

Like I said in another article, “The typical pseudoscientist will use logical fallacies to state very definitively that “it’s proven.” It’s the same whether it’s creationism (the belief that some magical being created the world some small number of years ago), alternative medicine (homeopathy, which is nothing but water, has magical properties to cure everything from cancer to male pattern baldness), or vaccine denialists. The worst problem is that in the world of the internet, if you Google these beliefs, the number of websites and hits that seem to state that they are THE TRUTH™ overwhelm those that are more skeptical or critical.”

So, using an open, but critical mind, the evidence is overwhelming – the GMO science says it’s safe for human consumption.

 

About GMO science

Without really trying (though it took several days to read through the articles), I found 118 peer-reviewed articles, mostly published in moderate to high impact factor journals that support the safety of GMO crops over a wide range of hypotheses: from transgenic particles in bovine milk to how non targeted insects survive when consuming or interacting with GMO plants. I found several meta reviews, which, as I’ve said before are the highest quality sources of evidence. None of this research was sponsored by corporations, so, please don’t bring the “scientist was paid off” argument.

There were hundreds of other articles I could have included. But these are the ones I judged to be the best. And if you add up all of the conclusions written from this GMO science, a consensus forms. And that is that GMO’s are generally safe. There will be no transgenic DNA in your glass of milk. The transgenic DNA isn’t going to be absorbed through your intestine and cause some autoimmune reaction.

And I just didn’t find the articles that supported my “beliefs” or “opinions.” I found the best articles period. Indisputably, these articles support the broad scientific consensus that GMO foods are safe.

Even independent scientific organizations agree. The American Association for the Advancement of Science (AAAS) is a prestigious international non-profit organization that has as its stated goals to promote cooperation among scientists, to defend scientific freedom, to encourage scientific responsibility, and to support scientific education and science outreach for the betterment of all humanity. AAAS is the world’s largest and most prestigious general scientific society, and is the publisher of the well-known scientific journal Science

The AAAS emphatically states, through the principle  that evolution and human caused climate change are scientific facts, so the organization is not in the hands of scientific lunatics or deniers. And with respect to GMO science, the AAAS has clearly and unreservedly published the scientific consensus regarding genetically modified foods (pdf):

The science is quite clear: crop improvement by the modern molecular techniques of biotechnology is safe … The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

If you, as a scientist or lay person, want to contradict this scientific consensus, then you need to bring published scientific evidence that refutes this consensus. Not one cherry picked article in a lousy journal, but robust quality and quantity of evidence in approximately the same levels as seen with the GMO science we see now.

But be forewarned, if it is junk science, I will call it junk science, like Gilles-Eric Séralini et al.’s paper about GMO corn causing cancer. That study was poorly designed, utilized bad statistics, and really provided no evidence whatsoever for anything except that Séralini is an incompetent scientist. Because openminded doesn’t mean I accept all evidence as being equivalent – being openminded means a willingness to review and critique new data and determine if it’s of sufficient quality and quantity to move the consensus. Claiming that Monsanto or Big Agra are suppressing the evidence is simply a logical fallacy unworthy of discussion.

But the most important thing is that science isn’t a vote based on the number of papers published. But when the consensus is so heavily weighted to the safety of GMO’s, it’s hard to see anything but a landslide. Now, I know that the typical GMO refuser will cherry pick a couple of poorly designed studies and try to refute all of these. Or they’ll read one or two of the articles, and pick out a sentence that might say “GMO fields showed slightly less insect activity than unused land” (while ignoring all of the other sentences).

If you’re asserting that GMO’s are dangerous–provide evidence. And it better be published in a relatively high impact journal. Because right now the GMO science is pretty overwhelming with respect to safety

Editor’s note: This article was originally published in June 2013. It has been completely revised and updated to include more comprehensive information, to improve readability and to add current research.

 

GMO science citations:

  1. Álvarez-Alfageme F, von Burg S, Romeis J. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions. PLoS One. 2011;6(7):e22690. doi: 10.1371/journal.pone.0022690. Epub 2011 Jul 28. PubMed PMID: 21829479; PubMed Central PMCID: PMC3145666.
  2. Anilkumar B, Reddy AG, Kalakumar B, Rani MU, Anjaneyulu Y, Raghunandan T, Reddy YR, Jyothi K, Gopi KS. Sero-biochemical Studies in Sheep Fed with Bt Cotton Plants. Toxicol Int. 2010 Jul;17(2):99-101. doi: 10.4103/0971-6580.72680. PubMed PMID: 21170255; PubMed Central PMCID: PMC2997465
  3. Atkinson HJ, Johnston KA, Robbins M. Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet. J Nutr. 2004 Feb;134(2):431-4. PubMed PMID: 14747684.
  4. Aulrich K, Böhme H, Daenicke R, Halle I, Flachowsky G. Genetically modified feeds in animal nutrition. 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Arch Tierernahr. 2001;54(3):183-95. PubMed PMID: 11865766.
  5. Batista R, Saibo N, Lourenço T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3640-5. doi: 10.1073/pnas.0707881105. Epub 2008 Feb 26. PubMed PMID: 18303117; PubMed Central PMCID: PMC2265136.
  6. Bakan B, Melcion D, Richard-Molard D, Cahagnier B. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem. 2002 Feb 13;50(4):728-31. PubMed PMID: 11829636.
  7. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J. 2006 Jul;4(4):369-80. PubMed PMID: 17177803.
  8. Brake DG, Thaler R, Evenson DP. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. J Agric Food Chem. 2004 Apr 7;52(7):2097-102. PubMed PMID: 15053558.
  9. Brake DG, Evenson DP. A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem Toxicol. 2004 Jan;42(1):29-36. PubMed PMID: 14630127.
  10. Böhme H, Aulrich K, Daenicke R, Flachowsky G. Genetically modified feeds in animal nutrition. 2nd communication: glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch Tierernahr. 2001;54(3):197-207. PubMed PMID: 11865767.
  11. Böhme H, Rudloff E, Schöne F, Schumann W, Hüther L, Flachowsky G. Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs. Arch Anim Nutr. 2007 Aug;61(4):308-16. PubMed PMID: 17760308.
  12. Borejsza-Wysocka E, Norelli JL, Aldwinckle HS, Malnoy M. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol. 2010 Jun 3;10:41. doi: 10.1186/1472-6750-10-41. PubMed PMID: 20525262; PubMed Central PMCID: PMC2910661.
  13. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001 May;81(5):735-47. PubMed PMID: 11351045.
  14. Bub A, Möseneder J, Wenzel G, Rechkemmer G, Briviba K. Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr. 2008 Mar;47(2):99-103. doi: 10.1007/s00394-008-0702-2. Epub 2008 Mar 4. PubMed PMID: 18320254.
  15. Cao S, Xu W, Luo Y, He X, Yuan Y, Ran W, Liang L, Huang K. Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) meal in a 90-day dietary toxicity study in rats. Mol Biosyst. 2011 Jul;7(7):2304-10. doi: 10.1039/c1mb05076a. Epub 2011 May 19. PubMed PMID: 21594293.
  16. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J.Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14458-62. Epub 2005 Sep 26. PubMed PMID: 16186495; PubMed Central PMCID: PMC1242293.
  17. Cattaneo MG, Yafuso C, Schmidt C, Huang CY, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Marsh SE, Antilla L, Dutilleul P, Carrière Y.Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7571-6. Epub 2006 May 4. PubMed PMID: 16675554; PubMed Central PMCID: PMC1457091.
  18. Chambers PA, Duggan PS, Heritage J, Forbes JM. The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J Antimicrob Chemother. 2002 Jan;49(1):161-4. PubMed PMID: 11751781.
  19. Cheeke TE, Rosenstiel TN, Cruzan MB. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot. 2012 Apr;99(4):700-7. doi: 10.3732/ajb.1100529. Epub 2012 Apr 2. PubMed PMID: 22473978.
  20. Chen ZL, Gu H, Li Y, Su Y, Wu P, Jiang Z, Ming X, Tian J, Pan N, Qu LJ. Safety assessment for genetically modified sweet pepper and tomato. Toxicology. 2003 Jun 30;188(2-3):297-307. PubMed PMID: 12767699.
  21. Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strömvik MV. Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem. 2008 May 14;56(9):3057-67. doi: 10.1021/jf073505i. Epub 2008 Apr 23. PubMed PMID: 18433101.
  22. Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci. 2003 Oct;81(10):2546-51. PubMed PMID: 14552382.
  23. Chowdhury EH, Mikami O, Murata H, Sultana P, Shimada N, Yoshioka M, Guruge KS, Yamamoto S, Miyazaki S, Yamanaka N, Nakajima Y. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11. J Food Prot. 2004 Feb;67(2):365-70. PubMed PMID: 14968971.
  24. Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y. Detection of Cry1Ab protein in gastrointestinal contents but not visceral organs of genetically modified Bt11-fed calves. Vet Hum Toxicol. 2003 Mar;45(2):72-5. PubMed PMID: 12678290.
  25. Chrenková M, Sommer A, Ceresnáková Z, Nitrayová S, Prostredná M. Nutritional evaluation of genetically modified maize corn performed on rats. Arch Tierernahr. 2002 Jun;56(3):229-35. PubMed PMID: 12391907.
  26. Cleveland TE, Dowd PF, Desjardins AE, Bhatnagar D, Cotty PJ. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag Sci. 2003 Jun-Jul;59(6-7):629-42. Review. PubMed PMID: 12846313.
  27. Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol. 2010 Jun;73(3):349-62. doi: 10.1007/s11103-010-9624-5. Epub 2010 Mar 27. PubMed PMID: 20349115.
  28. Coll A, Nadal A, Collado R, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M. Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines. Transgenic Res. 2009 Oct;18(5):801-8. doi: 10.1007/s11248-009-9266-z. Epub 2009 Apr 26. PubMed PMID: 19396622.
  29. Dai PL, Zhou W, Zhang J, Cui HJ, Wang Q, Jiang WY, Sun JH, Wu YY, Zhou T. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica. Ecotoxicol Environ Saf. 2012 May;79:232-7. doi: 10.1016/j.ecoenv.2012.01.005. Epub 2012 Feb 23. PubMed PMID: 22364780.
  30. Defernez M, Gunning YM, Parr AJ, Shepherd LV, Davies HV, Colquhoun IJ. NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem. 2004 Oct 6;52(20):6075-85. PubMed PMID: 15453669.
  31. Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A. Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res. 2009 Feb;8(2):838-48. doi: 10.1021/pr800359d. PubMed PMID: 19099506.
  32. Domingo JL, Giné Bordonaba J. A literature review on the safety assessment of genetically modified plants. Environ Int. 2011 May;37(4):734-42. doi: 10.1016/j.envint.2011.01.003. Epub 2011 Feb 5. Review. PubMed PMID: 21296423. Impact Factor: 6.248
  33. Dowd PF. Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. J Econ Entomol. 2000 Dec;93(6):1669-79. PubMed PMID: 11142297.
  34. Dowd PF. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J Econ Entomol. 2001 Oct;94(5):1067-74. PubMed PMID: 11681667.
  35. Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K. Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot. 2007;58(12):3309-21. Epub 2007 Sep 4. PubMed PMID: 17804429.
  36. Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One. 2008 Jan 9;3(1):e1415. doi: 10.1371/journal.pone.0001415. PubMed PMID: 18183296; PubMed Central PMCID: PMC2169303.
  37. Duc C, Nentwig W, Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community–a field study. PLoS One. 2011;6(10):e25014. doi: 10.1371/journal.pone.0025014. Epub 2011 Oct 17. PubMed PMID: 22043279; PubMed Central PMCID: PMC3197184.
  38. Duggan PS, Chambers PA, Heritage J, Forbes JM. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol Lett. 2000 Oct 1;191(1):71-7. PubMed PMID: 11004402.
  39. EFSA GMO Panel Working Group on Animal Feeding Trials.. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Review. PubMed PMID: 18328408.
  40. Eizaguirre M, Albajes R, López C, Eras J, Lumbierres B, Pons X. Six years after the commercial introduction of Bt maize in Spain: field evaluation, impact and future prospects. Transgenic Res. 2006 Feb;15(1):1-12. Review. PubMed PMID: 16475005.
  41. Enot DP, Beckmann M, Overy D, Draper J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14865-70. Epub 2006 Sep 21. PubMed PMID: 16990432; PubMed Central PMCID: PMC1595442.
  42. Ewen SW, Pusztai A. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine.Lancet. 1999 Oct 16;354(9187):1353-4. PubMed PMID: 10533866.
  43. Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem. 2008 Dec 10;56(23):11533-9. doi: 10.1021/jf802059w. PubMed PMID: 19007233.
  44. Flachowsky G, Halle I, Aulrich K. Long term feeding of Bt-corn–a ten-generation study with quails. Arch Anim Nutr. 2005 Dec;59(6):449-51. PubMed PMID: 16429830.
  45. Fonseca C, Planchon S, Renaut J, Oliveira MM, Batista R. Characterization of maize allergens – MON810 vs. its non-transgenic counterpart. J Proteomics. 2012 Apr 3;75(7):2027-37. doi: 10.1016/j.jprot.2012.01.005. Epub 2012 Jan 13. PubMed PMID: 22270010.
  46. Gao MQ, Hou SP, Pu DQ, Shi M, Ye GY, Chen XX. Multi-generation effects of Bt rice on Anagrus nilaparvatae, a parasitoid of the nontarget pest Nilapavarta lugens. Environ Entomol. 2010 Dec;39(6):2039-44. doi: 10.1603/EN10035. PubMed PMID: 22182572.
  47. Gizzarelli F, Corinti S, Barletta B, Iacovacci P, Brunetto B, Butteroni C, Afferni C, Onori R, Miraglia M, Panzini G, Di Felice G, Tinghino R.Evaluation of allergenicity of genetically modified soybean protein extract in a murine model of oral allergen-specific sensitization. Clin Exp Allergy. 2006 Feb;36(2):238-48. PubMed PMID: 16433863.
  48. Graf L, Hayder H, Mueller U. Endogenous allergens in the regulatory assessment of genetically engineered crops. Food Chem Toxicol. 2014 Aug 13;73C:17-20. doi: 10.1016/j.fct.2014.08.001. [Epub ahead of print] PubMed PMID: 25128445. Impact Factor: 2.906.
  49. Gregersen PL, Brinch-Pedersen H, Holm PB. A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res. 2005 Dec;14(6):887-905. PubMed PMID: 16315094.
  50. Gruber H, Paul V, Meyer HH, Müller M. Determination of insecticidal Cry1Ab protein in soil collected in the final growing seasons of a nine-year field trial of Bt-maize MON810. Transgenic Res. 2012 Feb;21(1):77-88. doi: 10.1007/s11248-011-9509-7. Epub 2011 Apr 16. PubMed PMID: 21499757.
  51. Gruber H, Paul V, Guertler P, Spiekers H, Tichopad A, Meyer HH, Muller M. Fate of Cry1Ab protein in agricultural systems under slurry management of cows fed genetically modified maize (Zea mays L.) MON810: a quantitative assessment. J Agric Food Chem. 2011 Jul 13;59(13):7135-44. doi: 10.1021/jf200854n. Epub 2011 Jun 8. PubMed PMID: 21604675.
  52. Huang F, Andow DA, Buschman LL.. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomologia Experimentalis et Applicata 2011; 140:1–16. DOI: 10.1111/j.1570-7458.2011.01138.x.
  53. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB. A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol. 2004 Dec;22(12):1601-6. PubMed PMID: 15583675.
  54. Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y, Li S, Jin W, Peng H. Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res. 2007 Aug;16(4):491-501. Epub 2007 Apr 19. PubMed PMID: 17443417.
  55. Kiliç A, Akay MT. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem Toxicol. 2008 Mar;46(3):1164-70. doi: 10.1016/j.fct.2007.11.016. Epub 2007 Dec 5. PubMed PMID: 18191319.
  56. Kleter GA, Peijnenburg AA, Aarts HJ. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol. 2005;2005(4):326-52. PubMed PMID: 16489267; PubMed Central PMCID: PMC1364539.
  57. Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong SS. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci. 2007 Nov;63(11):1107-15. Review. PubMed PMID: 17880042.
  58. Kleter GA, Peijnenburg AA. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens. BMC Struct Biol. 2002 Dec 12;2:8. Epub 2002 Dec 12. PubMed PMID: 12477382; PubMed Central PMCID: PMC139984.
  59. Knudsen I, Poulsen M. Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event. Regul Toxicol Pharmacol. 2007 Oct;49(1):53-62. PubMed PMID: 17719159.
  60. Kuiper HA, Noteborn HP, Peijnenburg AA. Adequacy of methods for testing the safety of genetically modified foods. Lancet. 1999 Oct 16;354(9187):1315-6. PubMed PMID: 10533854.
  61. Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K.Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.PLoS One. 2011 Feb 16;6(2):e16989. doi: 10.1371/journal.pone.0016989. PubMed PMID: 21359231; PubMed Central PMCID: PMC3040210.
  62. Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem. 2003 Apr 23;51(9):2438-46. PubMed PMID: 12696918.
  63. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem. 2003 Apr 23;51(9):2447-56. Erratum in: J Agric Food Chem. 2004 May 19;52(10):3210. PubMed PMID: 12696919.
  64. Lehesranta SJ, Davies HV, Shepherd LV, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005 Jul;138(3):1690-9. Epub 2005 Jun 10. PubMed PMID: 15951487; PubMed Central PMCID: PMC1176438.
  65. Li X, Huang K, He X, Zhu B, Liang Z, Li H, Luo Y. Comparison of nutritional quality between Chinese indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J Food Sci. 2007 Aug;72(6):S420-4. PubMed PMID: 17995700.
  66. Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C. Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. J Agric Food Chem. 2005 Mar 9;53(5):1453-6. PubMed PMID: 15740023.
  67. Malatesta M, Boraldi F, Annovi G, Baldelli B, Battistelli S, Biggiogera M, Quaglino D. A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing. Histochem Cell Biol. 2008 Nov;130(5):967-77. doi: 10.1007/s00418-008-0476-x. Epub 2008 Jul 22. PubMed PMID: 18648843.
  68. Malatesta M, Tiberi C, Baldelli B, Battistelli S, Manuali E, Biggiogera M. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean. Eur J Histochem. 2005 Jul-Sep;49(3):237-42. PubMed PMID: 16216809.
  69. Marvier M, McCreedy C, Regetz J, Kareiva P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science. 2007 Jun 8;316(5830):1475-7. PubMed PMID: 17556584.
  70. McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol. 2011 Nov 1;214(Pt 21):3672-7. doi: 10.1242/jeb.059923. PubMed PMID: 21993797.
  71. Moghissi AA, Pei S, Liu Y. Golden rice: scientific, regulatory and public information processes of a genetically modified organism.Crit Rev Biotechnol. 2016;36(3):535-41. doi: 10.3109/07388551.2014.993586. PubMed PMID: 25603722.
  72. Mohanta RK, Singhal KK, Tyagi AK, Rajput YS, Prasad S. Nutritional evaluation of transgenic cottonseed in the ration of lactating dairy cows. Trop Anim Health Prod. 2010 Mar;42(3):431-8. doi: 10.1007/s11250-009-9439-z. Epub 2009 Aug 24. PubMed PMID: 19701795.
  73. Momma K, Hashimoto W, Yoon HJ, Ozawa S, Fukuda Y, Kawai S, Takaiwa F, Utsumi S, Murata K. Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats. Biosci Biotechnol Biochem. 2000 Sep;64(9):1881-6. PubMed PMID: 11055391.
  74. Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. Plant Biotechnol J. 2011 Aug;9(6):693-702. doi: 10.1111/j.1467-7652.2010.00572.x. Epub 2010 Oct 29. PubMed PMID: 21040388.
  75. Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R. High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J. 2005 Aug;43(4):491-505. PubMed PMID: 16098104.
  76. Olson DM, Ruberson JR, Zeilinger AR, Andow DA. Colonization preference of Euschistus servus and Nezara viridula in transgenic cotton varieties, peanut, and soybean. Entomologia Experimentalis et Applicata 2011;139: 161–169. DOI: 10.1111/j.1570-7458.2011.01116.x.
  77. Panchin AY, Tuzhikov AI. Published GMO studies find no evidence of harm when corrected for multiple comparisons. Crit Rev Biotechnol. 2017 Mar;37(2):213-217. doi: 10.3109/07388551.2015.1130684. Review. PubMed PMID: 26767435.
  78. Paul V, Guertler P, Wiedemann S, Meyer HH. Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic Res. 2010 Aug;19(4):683-9. doi: 10.1007/s11248-009-9339-z. Epub 2009 Nov 4. PubMed PMID: 19888668; PubMed Central PMCID: PMC2902738.
  79. Peterson RK, Shama LM. A comparative risk assessment of genetically engineered, mutagenic, and conventional wheat production systems. Transgenic Res. 2005 Dec;14(6):859-75. PubMed PMID: 16315092.
  80. Phipps RH, Deaville ER, Maddison BC. Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. J Dairy Sci. 2003 Dec;86(12):4070-8. PubMed PMID: 14740846.
  81. Powell M, Wheatley AO, Omoruyi F, Asemota HN, Williams NP, Tennant PF. Comparative effects of dietary administered transgenic and conventional papaya on selected intestinal parameters in rat models. Transgenic Res. 2010 Jun;19(3):511-8. doi: 10.1007/s11248-009-9317-5. Epub 2009 Aug 19. PubMed PMID: 19690973.
  82. Qaim M. Benefits of genetically modified crops for the poor: household income, nutrition, and health. N Biotechnol. 2010 Nov 30;27(5):552-7. doi: 10.1016/j.nbt.2010.07.009. Epub 2010 Jul 17. Review. PubMed PMID: 20643233.
  83. Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 2007 Jun;16(3):261-80. Epub 2007 Apr 14. Review. PubMed PMID: 17436060.
  84. Reuter T, Aulrich K, Berk A, Flachowsky G. Investigations on genetically modified maize (Bt-maize) in pig nutrition: chemical composition and nutritional evaluation. Arch Tierernahr. 2002 Feb;56(1):23-31. PubMed PMID: 12389219.
  85. Rhee GS, Cho DH, Won YH, Seok JH, Kim SS, Kwack SJ, Lee RD, Chae SY, Kim JW, Lee BM, Park KL, Choi KS. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats. J Toxicol Environ Health A. 2005 Dec 10;68(23-24):2263-76. PubMed PMID: 16326439.
  86. Rose R, Dively GP. Effects of insecticide-treated and Lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environ Entomol. 2007 Oct;36(5):1254-68. PubMed PMID: 18284751.
  87. Rosati A, Bogani P, Santarlasci A, Buiatti M. Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol. 2008 Jun;67(3):271-81. doi: 10.1007/s11103-008-9315-7. PubMed PMID: 18306044.
  88. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A, Kamimura H. [A 52-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2007 Jun;48(3):41-50. Japanese. PubMed PMID: 17657996.
  89. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A. [A 104-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2008 Aug;49(4):272-82. Japanese. PubMed PMID: 18787312.
  90. Sarkar B, Patra AK, Purakayastha TJ, Megharaj M. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environ Monit Assess. 2009 Sep;156(1-4):595-604. doi: 10.1007/s10661-008-0508-y. Epub 2008 Aug 22. PubMed PMID: 18720017.
  91. Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res. 2012 Dec;21(6):1255-64. doi: 10.1007/s11248-012-9597-z. Epub 2012 Mar 21. PubMed PMID: 22430369.
  92. Schrøder M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel T, Danier J, Rychlik M, Emami K, Gatehouse A, Shu Q, Engel KH, Altosaar I, Knudsen I. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem Toxicol. 2007 Mar;45(3):339-49. Epub 2006 Sep 8. PubMed PMID: 17050059.
  93. Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu Rev Entomol. 2002;47:845-81. Review. PubMed PMID: 11729093.
  94. Shepherd LV, McNicol JW, Razzo R, Taylor MA, Davies HV. Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res. 2006 Aug;15(4):409-25. PubMed PMID: 16906442.
  95. Sinagawa-García SR, Rascón-Cruz Q, Valdez-Ortiz A, Medina-Godoy S, Escobar-Gutiérrez A, Paredes-López O. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin. J Agric Food Chem. 2004 May 5;52(9):2709-14. PubMed PMID: 15113180.
  96. Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol. 2012 Mar;50(3-4):1134-48. doi: 10.1016/j.fct.2011.11.048. Epub 2011 Dec 3. Review. PubMed PMID: 22155268.
  97. Sten E, Skov PS, Andersen SB, Torp AM, Olesen A, Bindslev-Jensen U, Poulsen LK, Bindslev-Jensen C. A comparative study of the allergenic potency of wild-type and glyphosate-tolerant gene-modified soybean cultivars. APMIS. 2004 Jan;112(1):21-8. PubMed PMID: 14961970.
  98. Tang M, Xie T, Cheng W, Qian L, Yang S, Yang D, Cui W, Li K. A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Transgenic Res. 2012 Jun;21(3):499-510. doi: 10.1007/s11248-011-9550-6. Epub 2011 Sep 11. Erratum in: Transgenic Res. 2012 Aug;21(4):927. PubMed PMID: 21910016.
  99. Taylor J, King RD, Altmann T, Fiehn O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics. 2002;18 Suppl 2:S241-8. PubMed PMID: 12386008.
  100. Tian JC, Chen Y, Li ZL, Li K, Chen M, Peng YF, Hu C, Shelton AM, Ye GY. Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. PLoS One. 2012;7(4):e35164. doi: 10.1371/journal.pone.0035164. Epub 2012 Apr 12. PubMed PMID: 22511982; PubMed Central PMCID: PMC3325204.
  101. Thigpen JE, Setchell KD, Saunders HE, Haseman JK, Grant MG, Forsythe DB. Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR J. 2004;45(4):401-16. Review. PubMed PMID: 15454679.
  102. Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Dänicke S, Schauzu M, Hafez HM, Flachowsky G. Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Arch Tierernahr. 2003 Aug;57(4):235-52. PubMed PMID: 14533864.
  103. Van Eenennaam AL, Young AE. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J Anim Sci. 2014 Oct;92(10):4255-78. doi: 10.2527/jas.2014-8124. Epub 2014 Sep 2. PubMed PMID: 25184846. Full review of this article.
  104. Venneria E, Fanasca S, Monastra G, Finotti E, Ambra R, Azzini E, Durazzo A, Foddai MS, Maiani G. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops. J Agric Food Chem. 2008 Oct 8;56(19):9206-14. doi: 10.1021/jf8010992. Epub 2008 Sep 10. PubMed PMID: 18781763.
  105. Vogler U, Rott AS, Gessler C, Dorn S. Terpene-mediated parasitoid host location behavior on transgenic and classically bred apple genotypes. J Agric Food Chem. 2009 Aug 12;57(15):6630-5. doi: 10.1021/jf901024y. PubMed PMID: 19722568.
  106. von Burg S, van Veen FJ, Álvarez-Alfageme F, Romeis J. Aphid-parasitoid community structure on genetically modified wheat. Biol Lett. 2011 Jun 23;7(3):387-91. doi: 10.1098/rsbl.2010.1147. Epub 2011 Jan 19. PubMed PMID: 21247941; PubMed Central PMCID: PMC3097882.
  107. Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H.High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot. 2006;57(12):3069-78. Epub 2006 Aug 14. PubMed PMID: 16908506.
  108. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Gelencsér E, Jánosi A, Epstein MM, Ross RP, Lawlor PG. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS One. 2011;6(11):e27177. doi: 10.1371/journal.pone.0027177. Epub 2011 Nov 23. PubMed PMID: 22132091; PubMed Central PMCID: PMC3223173.
  109. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Ross RP, Cassidy JP, Lawlor PG. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. Br J Nutr. 2012 Feb;107(3):364-71. doi: 10.1017/S0007114511003011.
  110. Wang Y, Dai P, Chen X, Romeis J, Shi J, Peng Y, Li Y. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults. Environ Toxicol Chem. 2016 Oct 7. doi: 10.1002/etc.3647. [Epub ahead of print] PubMed PMID: 27714836.
  111. Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 2007 Apr;16(2):203-11. Epub 2006 Nov 11. Erratum in: Transgenic Res. 2008 Jun;17(3):477-8. PubMed PMID: 17115253.
  112. Wiedemann S, Gürtler P, Albrecht C. Effect of feeding cows genetically modified maize on the bacterial community in the bovine rumen. Appl Environ Microbiol. 2007 Dec;73(24):8012-7. Epub 2007 Oct 12. PubMed PMID: 17933942; PubMed Central PMCID: PMC2168158.
  113. Yuan Y, Xu W, Luo Y, Liu H, Lu J, Su C, Huang K. Effects of genetically modified T2A-1 rice on faecal microflora of rats during 90 day supplementation. J Sci Food Agric. 2011 Aug 30;91(11):2066-72. doi: 10.1002/jsfa.4421. Epub 2011 Apr 26. PubMed PMID: 21520451.
  114. Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. Transgene x environment interactions in genetically modified wheat. PLoS One. 2010 Jul 12;5(7):e11405. doi: 10.1371/journal.pone.0011405. PubMed PMID: 20635001; PubMed Central PMCID: PMC2902502.
  115. Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res. 2008 Apr;17(2):293-306. Epub 2007 Jun 5. PubMed PMID: 17549600.
  116. Zhu Y, Li D, Wang F, Yin J, Jin H. Nutritional assessment and fate of DNA of soybean meal from roundup ready or conventional soybeans using rats. Arch Anim Nutr. 2004 Aug;58(4):295-310. PubMed PMID: 15570744.
  117. Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res. 2008 May;7(5):1850-61. doi: 10.1021/pr0705082. Epub 2008 Apr 5. PubMed PMID: 18393457.
  118. Zywicki B, Catchpole G, Draper J, Fiehn O. Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem. 2005 Jan 15;336(2):178-86. PubMed PMID: 15620882.

[wp_ad_camp_5]

Michael Simpson

Don’t miss each new article!

We don’t spam! Read our privacy policy for more info.

Liked it? Take a second to support Michael Simpson on Patreon!
Become a patron at Patreon!