Last updated on February 16th, 2012 at 02:33 pm
I decided to write a three-part article here that partially describes how they make their case, not necessarily why humans accept it so easily. I’m not a psychiatrist, and I certainly don’t play one on TV. I thought we should start with the scientific method, or how real science works.
I always get suspicious when someone makes an argument with the statement of “it’s been proven to work”, “the link is proven”, or, alternatively, they state some negative about scientifically supported therapies. Typically, I hear these kinds of statements from the pseudoscience pushing crowd. For example, real science has debunked the “there is a proven link between vaccines and autism,” a common and popular pseudoscientific belief. Or that most alternative medicine (CAM) therapies work based on numerous logical fallacies that suspends reason, and accepts “belief” in the therapy, something that evidence-based medicine just doesn’t do.
In fact, science rarely uses the term “proven”, because the scientific method is not a system to make a definitive answer on any question–scientists always leave open the possibility of an alternative hypothesis that can be tested. If the alternate hypothesis can be supported through experimentation, then it can replace the original one. When an alternative medicine or junk science supporter states “it has been proven,” ask where is the evidence. What is more troubling is that someone who believes in these therapies cannot imagine that they don’t work, what is called falsification, which is a hallmark of good science. Whenever I hear that a scientist say, “we were wrong, it doesn’t work,” my retort is “excellent, good science.”
The scientific method is an unbiased systematic approach to answer questions about the natural world, including medicine. It has several basic steps:
- Define the question–this could be anything from “does this compound have an effect on this disease?” or “how does this disease progress?”
- Observations–this is the subjective part of science. Do we observe trends or anomalies? Does a physician notice that every patient from a town or neighborhood exhibit the same disease? A lot of science arises from observations of the natural world. One of the most famous stories in the early history of medicine is when Edward Jenner observed that milkmaids rarely were infected by smallpox because they were exposed to cowpox, a less virulent disease.
- Hypothesis–taking the observations, create a hypothesis that can be tested. In Jenner’s case, he hypothesized that exposure to cowpox immunized individuals to small pox.
- Experiment–simply, the scientist then tests the hypothesis with experiments and collect the data. The experiments are not designed to solely validate the hypothesis but may also attempt to contradict it.
- Analyze–this requires statistics to determine the significance or results.
- Interpret–sometimes the data leads to a revision of the hypothesis, which means the scientist has to return to steps 3-6. Or it confirms or supports the hypothesis, which means the researcher can move to Step 7.
- Publish results–in today’s scientific community, the results require peer-review, which subjects the data, analysis and interpretation to the scrutiny of other scientists before publication. This is a critical step that ensures that the results can stand up to criticism. It does not prove anything, but it does support the hypothesis.
- Retesting–Many times the research is repeated by others, or the hypothesis may be slightly revised with additional data. Science is not static, it constantly revises theories as more data is gathered. For this reason alone, science is not an absolute, it is constantly seeking new data.
Science is an evidence-based systematic analysis without inherent opinion or emotion. In other words, it is a method to cut through opinions and anecdotal observations, so that one can have some reasonable expectation that a medicine or device will work as planned. CAM fails to utilize scientific method. Supporters of CAM usually perform experiments to confirm the hypothesis, never to contradict it. It is the fundamental principle of falsifiability, that is, that if a hypothesis is false, it can be shown in experimentation that allows science to have an open mind about the world. When you speak to a believer of CAM, they almost never assume that their treatment cannot work.
It’s interesting that CAM and pseudoscience start out with observations of the real world. For example, CAM therapies sometimes work, not because of the therapies themselves, but because humans just get better from many diseases. So, these CAM therapies rely upon confirmation bias, that is, the tendency to accept information that supports your beliefs, or even post hoc ergo propter hoc, a logical fallacy which says “since that event followed this one, that event must have been caused by this one.” Humans too often conflate correlation and causation. Just because events follow one another, that doesn’t mean one causes the other. I suppose that’s how superstitions arise.
Part 2 of this discussion will be out as soon as I write it. It will discuss how to tell what is “proven” or what is science. Stay tuned.